Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees
نویسندگان
چکیده
The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.
منابع مشابه
Climate influences the leaf area/sapwood area ratio in Scots pine.
We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Sc...
متن کاملStem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.
Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) w...
متن کاملRelationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
We compared the effects of nitrogen fertilization on shoot hydraulic architecture and leaf photosynthetic properties of Eucalyptus grandis Hill ex Maiden trees in Hawaii. It was hypothesized that water transport capacity would adjust to nutrient availability, with leaf specific hydraulic conductivity (kl) increasing in fertilized trees in coordination with higher photosynthetic capacity per uni...
متن کاملSapwood Area as an Estimator of Leaf Area and Foliar Weight in Cherrybark Oak and Green Ash
The relationships between foliar weight/leaf area and four stem dimensions (dbh, total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the southern United States, cherrybark oak (Quercus falcata var. pagodifolia EN.) and green ash (fraxinus pennsylvanica Marsh.). In all models tested and for ...
متن کاملHydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats
We investigated the hydraulic properties in relation to soil moisture, leaf habit, and phylogenetic lineage of 17 species of oaks ( Quercus ) that occur sympatrically in northern central Florida (USA). Leaf area per shoot increased and Huber values (ratio of sapwood area to leaf area) decreased with increasing soil moisture of species’ habitats. As a result, maximum hydraulic conductance and ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015